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RAM B2 FLIGHT TEST OF A METHOD FOR RFDUCING RADIO ATTENUATION 

DURING HYPERSONIC REENTRY" 

By W i l l i a m  F. Cuddihy, Ivan E. Beckwith, 
and Lyle C. Schroeder 

SUMMARY 

A method of overcoming reentry ionizat ion blackout by in jec t ing  water i n t o  
the  flow f i e l d  was ve r i f i ed  by a f l i g h t  test .  
t o  cause radio s igna l  recovery. 
a l t i t u d e  of 162,200 ft. 
and 9210 mc were transmitted from the  vehicle. Preliminary information on tra- 
jectory parameters, water flow rates, and signal-strength records i s  presented. 

Small amounts of water were found 
Maximum vehicle ve loc i ty  was 17,840 f t / s e c  a t  an 

Frequencies of 30.8 mc, 225.7 m c ,  244.3 mc,  $00 mc, 

INTRODUCTION 

Plasma i s  formed within the  flow f i e l d  during the  f l i g h t  of a hypersonic 
vehicle by thermal ionizat ion of t he  consti tuents of t he  a i r  as it i s  compressed 
and heated by the  strong bow shock or heated within the  boundary layer .  Free 
electrons in t h e  plasma in t e rac t  with electromagnetic radiat ion t o  and from the  
vehicle and cause s igna l  attenuation. The addition of a foreign material may 
decrease the  free-electron concentration and, as a result, the  radio attenuation. 
Possible mechanisms f o r  reducing the  l o c a l  electron concentrations are: 
(1) increased recombination and attachment as a result of reduced temperatures 
and increased density; (2) electron attachment by const i tuents  of t he  addi t ive 
having an a f f i n i t y  f o r  free electrons (e lec t rophi l ic  action) ; (3) shock-shape mod- 
if ica t ion  by stagnation inject ion.  

There i s  a la rge  body of l i t e r a t u r e  on reentry communications blackout. 
References 1 t o  6 are representative.  
usefu l  f o r  telemetry,  command performance, guidance, tracking, voice communica- 
t i on ,  and modification of the ionized wake. 
sible methods of a l l ev ia t ing  blackout, t h e  addition of material t o  the flow f i e l d  
i s  included. 

Material addi t ion t o  the  flow f i e l d  may be 

In p rac t i ca l ly  every survey of pos- 

The RAM (Radio Attenuation Measurement) research program at  Langley Research 
Center i s  a comprehensive invest igat ion of reentry communications including theo- 
r e t i c a l  s tudies ,  extensive tests i n  ground f a c i l i t i e s ,  and fl ight tes t s  designed 
t o  provide experimental data  on radio attenuation. References 6 t o  16 give some 
r e s u l t s  obtained i n  t h i s  program. 

* T i t l e ,  Unclassified. 
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On May 28, 1963 a vehicle w i t h  a reentry communications experiment (desig- 
nated RAM B2) w a s  launched from NASA Wallops Stat ion as pa r t  of this program. 
Radio communications which were disrupted by the  formation of an ionized l aye r  
during hypersonic f l i g h t  i n  the ea r th ' s  atmosphere were readi ly  reestabl ished by 
t h e  inject ion of water i n to  the  flow f i e ld .  
from the RAM B2 material-addition f l i g h t  and i s  published without ana lys i s  i n  
order t o  make t h e  information avai lable  quickly. 

This report  presents selected data  

DESCRIPTION OF APPAFWPUS 

Vehicle 

The RAM B 2  booster vehicle consisted of a Castor motor as the  f i rs t  stage,  
an Antares motor as the second stage, and an Alcor motor as the t h i r d  stage. 
spin motors plus  canted f i n s  were used t o  s t a b i l i z e  the vehicle at  about 3 rps. 
Figure 1 i s  a drawing of the vehicle. 

Two 

Figure 2 shows the external  configuration of the t h i r d  (payload) stage 
including the antenna locat ions and in jec t ion  s i t e s .  The spherical  nose w a s  
8 inches i n  diameter and was followed by a 9 O  half-angle cone, a 22-inch-diameter 
cy l indr ica l  section, and a flare. A nonablating beryllium heat sinkMas used on 
the f i r s t  19 inches of the nose cone i n  order that the  e f f ec t s  -of mater ia l  addi- 
t i o n  on signal  loss  could be studied with minimum ablat ion contaminants. A f t  see 
t i o n s  were covered w i t h  a modified epoxy r e s in  or  with f ibe r .g l a s s .  The m6st fo r '  
ward antenna w a s  a s l o t  tuned t o  244.3 mc. I n  t h i s  same region, four  X-band horn 
antennas were located around t h e  periphery. A 30.8-mc r ing  antenna w a s  located 
f a r t h e r  back along the body on the  cy l ind r i ca l  section. A 225.7-mc antenna w a s  
formed by conical sections which were p a r t  of the f l a r e  s t ructure .  
looking C-band antenna was a l so  located i n  the  f l a r e .  

A rearward 

Water-Injection System 

The water-injection system i s  shown schematically i n  f igure  3 and consisted 
of a pressurized water tank, a squib valve, a d i s t r ibu t ion  valve, and the  injec-  
t i o n  or i f ices .  Since it was considered desirable  t o  keep the  in jec t ion  pressure 
r e l a t ive ly  constant, the  water flow r a t e  w a s  varied by changing the number of 
in jec t ion  s i t e s .  For in jec t ion  from the  stagnation point,  up t o  seven 0.080-incf 
diameter o r i f i c e s  were used. Side in j ec t ion  s i t e s  were located 180° apar t  and UI 
t o  ninety-eight 0.015-inch-diameter o r i f  i c e s  per side were employed. 
shows the d e t a i l s  and locat ion of the stagnation point and s ide  o r i f i ce s .  
d i s t r ibu t ion  valve w a s  designed t o  vary the  flow r a t e  f o r  stagnation-point i n j ec -  
t i o n  through seven l e v e l s  of flow, t o  provide an off period f o r  a t tenuat ion c a l i -  
b ra t ion  Purposes, and t o  vary the  flow in jec ted  from side o r i f i c e s  through seven 
leve ls .  

Figure 4 
The 
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Range Stat ions 

Receiving s t a t ions  f o r  t h e  RAM B2  s ignals  with t h e i r  respective -frequency 
coverage are shown i n  f igure  5. Receiving s ta t ions were located a t  Wallops 
Station, Va.; Langley Field,  Va.; Coquina Beach, N.C.; on a ship i n  the  Atlant ic  
Ocean 315 naut ica l  miles from the launch s i t e  on an azimuth of 124.4'; and a t  
Bermuda. Frequency coverage available a t  each of these s ta t ions  i s  a l so  shown i n  
f igure  5. 

RESULTS AND DISCUSSION 

Launch and Trajectory 

The RAM B 2  vehicle w a s  launched May 28, 1963 a t  259:Og edt  from the  N S L 
Wallops Station. All systems operated as planned. First-stage burnout occurred 
38.4 seconds after launch a t  an a l t i t u d e  of 33,000 feet; second-stage ign i t ion ,  at 
a t  50.9 seconds and an a l t i t ude  of 65,000 feet; second-stage burnout and third-  
stage igniihon at 89.1 seconds and an a l t i t u d e  of ll7,OOO feet; and third-stage 
burnout a t  118.3 seconds a t  an a l t i t u d e  of 162,000 feet. 
ve loc i ty  w a s  17,840 f e e t  per  second. 
proceeded through the  blackout region and reached an apogee of 295,000 feet. 
Velocity var ia t ion  with a l t i t u d e  i s  shown i n  f igure  6. 
t he  ascending p a r t  of t h e  f l i g h t  and thereby provided telemetry coverage close t o  
t h e  launch si te.  R e a l - t i m e  telemetry was transmitted from the  225.7-mc telemetry 
system and an 80-second delayed playback s igna l  w a s  transmitted from t h e  244.3-mc 
telemetry system. 
telemetry information would have been obtained from the  playback s igna l  after the  
t h i r d  stage had emerged from the  blackout region. 

The third-stage burnout 
The t h i r d  stage which included the  payload 

The data  were taken during 

Thus, i n  case of loss  of signal due t o  blackout, t he  same 

Water Flow Rates 

Figure 7 shows t h e  var ia t ion of water flow rate with t i m e  t h a t  w a s  obtained 
during the RAM B2 f l i g h t .  The water addition was i n i t i a t e d  at 110 seconds after 
launch during third-s tage burning. 
pluse through a range of flows. The maximum flow rate per  cycle varied through- 
but t he  da ta  period from 1.5 t o  0.5 pounds per  second and the  minimum flow rates 
varied from 0.3 t o  0.06 pound per second. Inject ion cycles were a l te rna ted  from 
stagnation o r i f i c e s  and s ide or i f ices .  
Spproximately 6 seconds and the water-addition period l a s t ed  about 70 seconds. 

The flow rate w a s  varied f o r  each in jec t ion  

A complete in jec t ion  sequence l a s t ed  

Signal-Strength Measurements 

The onset of a t tenuat ion occurred a t  about 100 seconds after l i f t - o f f .  AS 
the vehicle approached i t s  maximum veloci ty ,  t h e  30.8-mc and 225.7-mc signals 
rere severely attenuated. The 244.3-m~ signal which w a s  being transmitted from 
;he forward antenna w a s  blacked out. 
2omplete recovery w a s  noted f o r  stagnation-point in jec t ion  and partial recovery 

When water w a s  injected in to  the  flow f i e ld ,  
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f o r  side inject ion.  
were not noticeably attenuated at any t i m e  throughout the  f l i g h t  t e s t .  

The C-band s igna l  a t  5600 mc and the  X-band s igna l  at 9210 m 

Some of the s ignal  loss  observed during the periods of no w a t e r  flow can be 
a t t r ibu ted  t o  antenna detuning which w a s  evident from the  voltage standing wave 
r a t i o  (VSWR) measured f o r  several  of the  antennas. 
antenna exceeded the  meaningful range of the  instrument which w a s  about 10. 
m a x i m u m  VSWR value of 7 w a s  recorded f o r  the 30.8-mc antenna. 
returned t o  approximately t h e i r  free-space values during water inject ion.  
VSWR f o r  t he  225.7-m~ antenna showed only minor var ia t ions  during the  f l i g h t .  

The VSWR f o r  t he  244.3-mc 
A 

The VSWR values 
The 

Figure 8 i s  a sample of the  oscil lograph records taken during the data  per ic  
and shows several  s igna l  s t rength records f o r  one complete water-injection cycle. 
The 3-cycle-per-second var ia t ion w a s  due t o  antenna-pattern change with vehicle 
r o l l .  
in ject ion i s  not known bu t  may have been caused by bow-shock osc i l l a t ions .  

The cause of the  rapid var ia t ion  of s ignal  s t rength during stagnation 

Signal-strength measurements for  t he  e n t i r e  data period (100 t o  180 seconds 
a f t e r  launch) a t  frequencies of 244.3 mc, 30.8 mc, and 225.7 mc are given i n  f ig -  
ure ?. The var ia t ions  of s ignal  s t rength due t o  vehicle r o l l  and the  rapid var i r  
t i o n s  during stagnation in jec t ion  have been removed f o r  c l a r i t y  by f a i r i n g  throw 
the  peak values of recorded signals.  

244.3-mc signal.- Figure 9(a) shows the  s igna l  s t rength received at  the  
Wallops Stat ion from the  244.3-mc telemetry system. 
obtained by a flow r a t e  of less than l / lOth  of a pound of water per second. For 
t h i s  antenna location substant ia l  recovery w a s  noted f o r  both stagnation and sidf 
injection. The upper dashed l i n e  ind ica tes  t h e  s igna l  l e v e l  that would have beer 
obtained i f  there  had been no ionizat ion at tenuat ion of the  transmitted signal.  
The lower dashed l i n e  ind ica tes  the  s igna l  l e v e l  t h a t  would have been obtained i j  

there  had been no water addition. The so l id  curve ind ica tes  the received s igna l  
strength and each recovery pulse coincided with t h e  in jec t ion  of water. 

Recovery from blackout was 

A narrow band antenna w a s  used here t o  provide maximum s e n s i t i v i t y  t o  t h e  
plasma. 
as indicated by a VSWR of grea te r  than 10. Detuning can reduce t h e  e f f ic iency  0. 

an antenna and cause an addi t ional  s igna l  loss .  It i s  uncertain at  t h i s  t i m e  ho. 
much of the measured signal l o s s  should be a t t r i bu ted  t o  detuning e f f e c t s  and ho 
much t o  plasma attenuation. 

Detuning of the antenna occurred because of t he  presence of t h e  plasma 

30.8-mc signal.- Figure 9(b) shows the  s igna l  s t rength f o r  t h e  30.8-mc t r a n  
m i t t e d  Signal, a s  received a t  Coquina Beach, N.C. T h i s  i s  one of t he  f i rs t  test  
of high-f requency (HF) a t tenuat ion measurements under carefu l ly  control led condi 
%ions. The s igna l  suffered less at tenuat ion than e i t h e r  of t h e  VHF signals from 
antennas located fore  and af t  of t h i s  antenna s ta t ion .  However, since t h e  anten 
designs a re  d i f fe ren t ,  a d i r ec t  comparison cannot be made. For t h i s  antenna 
design and location, stagnation-point in jec t ion  i s  noted t o  be more e f f ec t ive  t h  
side injection. On several  of t h e  recovery pulses  f o r  s ide in jec t ion ,  increased 
s teps  i n  s igna l  strength can be found which correspond t o  the increasing Steps C 
water flow rate. For example, note the period of 128 t o  130 seconds after lift- 
off i n  f igures  7 and 9(b) .  
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225.7-mc signal.- Figure 9(c)  s -a1 ows st rength received a t  the  NASA 
Wallops Stat ion from the  225.7-mc antenna which was located on t h e  f lare of the  
third-s tage.  
t he  ionizat ion period. 
complete recovery of the attenuated s ignals  w a s  noted except p r i o r  t o  third-stage 
burnout a t  118.5 seconds where some e f f e c t s  of rocket-exhaust a t tenuat ion could 
be seen. See reference 17. The effect iveness  of the side in jec t ion  on attenua- 
t i o n  w a s  the  smallest a t  t h i s  antenna. Since the side-injection system was 
designed pr imari ly  f o r  the forward s l o t  antenna, t h i s  reduced effect iveness  may 
have been caused by penetration of water spray well beyond the  shock boundary a t  
the  225.7-mc antenna s ta t ion.  

This s ignal  as wel l  as t h e  30.8-mc signal w a s  received throughout 
Again, during the  stagnation-point i n j ec t ion  periods, 

CONCLUDING REMARKS 

A f l i g h t  t e s t  has been conducted t o  determine whether radio communications 
during reentry can be established by t h e  inject ion of water i n to  t h e  flow f i e l d .  
Attenuation l eve l s  with and without water in jec t ion  have been measured f o r  f r e -  
quencies of 30.8 mc, 225.7 mc, 244.3 mc, 5600 mc, and 9210 mc over a range of 
a t t i t u d e s  a t  a m a x i m u m  ve loc i ty  of 17,840 f e e t  per second. Several antenna loca- 
t i o n s  and designs have been u t i l i zed .  It has been shown t h a t  f o r  t he  ve loc i t i e s  
and a l t i t u d e s  of this t es t ,  the C-band and higher frequencies were not noticeably 
attenuated, bu t  the 30.8-m~, 225.7-mc, and 244.3-mc frequencies were attenuated. 
Relat ively s m a l l  mounts  of water have been found t o  a l l e v i a t e  the  attenuation. 
For t h i s  pa r t i cu la r  system, in jec t ion  f rom the  stagnation point has been shown t o  
be more e f f ec t ive  than in jec t ion  from a side location. 

Although the  water-addition concept has been proven t o  be ef fec t ive ,  f’urther 
work i s  required t o  determine t h e  effect  of other addi t ives ,  t o  achieve the  m a x i -  
mum u t i l i z a t i o n  of a given additive,  and t o  extend the  r e s u l t s  t o  other  shapes 
and t o  higher ve loc i t ies .  Tests of material  addition combined with various heat- 
shield ab la t ion  products should a l s o  be considered. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, Va. ,  September 9, 1-963. 
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/ I  Dia = 30.61 A Dia f 31.00 ,-Spin motor,  2 Dia = 22.00 

S i a  S t a  Sta  
-17.27 120.90 238.18 s t a  

478.18 

Figure 1.- RAM B2  launch vehicle.  All dimensions are i n  inches. 
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1 .  Stagnation inject ion locat ion 
2. Side inject ion locatiom 
3. 244.3 mc VHF antenna 
4.  9210 mc X-band antenna 
5. 30.8 mc HF antenna 
6 .  225.7 mc VHF antenna 
7.  5600 mc C-band antenna 

F i m E  2.- External view of RAM B2 t h i r d  stage sharing antenna and in j ec t ion  o r i f i c e  loca t ions .  
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Figure 3.- Schematic diagram of t h e  water-injection system. 
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Figure 4.- De ta i l s  of stagnation-point and s ide  in jec t ion  o r i f i ce s .  A l l  dimensions are i n  inches.  - 9 
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Apogee 295,000 f't 

Range Recoverer 
Iapac t 

Firnure 5.- Receiving s t a t ions  f o r  t h e  RAM B2 s igna l s  with t h e i r  respective frequency coverage. 
Frequencies of s t a t i o n s  a r e  denoted by numbers i n  parentheses. 
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Figure 6.- Variation of a l t i t u d e  with veloci ty  f o r  the RAM B2  f l i g h t .  
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Figure 7.- Variation of water flow r a t e  with time. 
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(a) 244.3 mc; NASA Wallops S ta t ion .  

Figure 9.- Signal s t rength  during da ta  period. Dashed l i n e s  ind ica te  s igna l - leve l  boundaries 
with and without water in jec t ion .  
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(b) 30.8 mc; Coquina Beach, North Carolina. 

Figure 9.- Continued. 
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( c )  225.7 mc; NASA Wallops S ta t ion .  

Figure 9. - Concluded. 


